Database Commons
Database Commons

a catalog of worldwide biological databases

Database Profile

General information

URL: http://www.gramene.org
Full name: A comparative resource for plants
Description: Gramene is a curated, open-source, integrated data resource for comparative functional genomics in crops and model plant species.
Year founded: 2002
Last update: 2021-10-07
Version: v64
Accessibility:
Manual:
Accessible
Real time : Checking...
Country/Region: United States

Contact information

University/Institution: Cold Spring Harbor Laboratory
Address: Cold Spring Harbor,NY 11724,USA
City: Cold Spring Harbor
Province/State: NY
Country/Region: United States
Contact name (PI/Team): Doreen Ware
Contact email (PI/Helpdesk): ware@cshl.edu

Publications

33170273
Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. [PMID: 33170273]
Tello-Ruiz MK, Naithani S, Gupta P, Olson A, Wei S, Preece J, Jiao Y, Wang B, Chougule K, Garg P, Elser J, Kumari S, Kumar V, Contreras-Moreira B, Naamati G, George N, Cook J, Bolser D, D'Eustachio P, Stein LD, Gupta A, Xu W, Regala J, Papatheodorou I, Kersey PJ, Flicek P, Taylor C, Jaiswal P, Ware D.

Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide. The resource is committed to open access and reproducible science based on the FAIR data principles. Since the last NAR update, we made nine releases; doubled the genome portal's content; expanded curated genes, pathways and expression sets; and implemented the Domain Informational Vocabulary Extraction (DIVE) algorithm for extracting gene function information from publications. The current release, #63 (October 2020), hosts 93 reference genomes-over 3.9 million genes in 122 947 families with orthologous and paralogous classifications. Plant Reactome portrays pathway networks using a combination of manual biocuration in rice (320 reference pathways) and orthology-based projections to 106 species. The Reactome platform facilitates comparison between reference and projected pathways, gene expression analyses and overlays of gene-gene interactions. Gramene integrates ontology-based protein structure-function annotation; information on genetic, epigenetic, expression, and phenotypic diversity; and gene functional annotations extracted from plant-focused journals using DIVE. We train plant researchers in biocuration of genes and pathways; host curated maize gene structures as tracks in the maize genome browser; and integrate curated rice genes and pathways in the Plant Reactome.

Nucleic Acids Res. 2021:49(D1) | 45 Citations (from Europe PMC, 2024-04-06)
29165610
Gramene 2018: unifying comparative genomics and pathway resources for plant research. [PMID: 29165610]
Tello-Ruiz MK, Naithani S, Stein JC, Gupta P, Campbell M, Olson A, Wei S, Preece J, Geniza MJ, Jiao Y, Lee YK, Wang B, Mulvaney J, Chougule K, Elser J, Al-Bader N, Kumari S, Thomason J, Kumar V, Bolser DM, Naamati G, Tapanari E, Fonseca N, Huerta L, Iqbal H, Keays M, Munoz-Pomer Fuentes A, Tang A, Fabregat A, D'Eustachio P, Weiser J, Stein LD, Petryszak R, Papatheodorou I, Kersey PJ, Lockhart P, Taylor C, Jaiswal P, Ware D.

Gramene (http://www.gramene.org) is a knowledgebase for comparative functional analysis in major crops and model plant species. The current release, #54, includes over 1.7 million genes from 44 reference genomes, most of which were organized into 62,367 gene families through orthologous and paralogous gene classification, whole-genome alignments, and synteny. Additional gene annotations include ontology-based protein structure and function; genetic, epigenetic, and phenotypic diversity; and pathway associations. Gramene's Plant Reactome provides a knowledgebase of cellular-level plant pathway networks. Specifically, it uses curated rice reference pathways to derive pathway projections for an additional 66 species based on gene orthology, and facilitates display of gene expression, gene-gene interactions, and user-defined omics data in the context of these pathways. As a community portal, Gramene integrates best-of-class software and infrastructure components including the Ensembl genome browser, Reactome pathway browser, and Expression Atlas widgets, and undergoes periodic data and software upgrades. Via powerful, intuitive search interfaces, users can easily query across various portals and interactively analyze search results by clicking on diverse features such as genomic context, highly augmented gene trees, gene expression anatomograms, associated pathways, and external informatics resources. All data in Gramene are accessible through both visual and programmatic interfaces.

Nucleic Acids Res. 2018:46(D1) | 70 Citations (from Europe PMC, 2024-04-06)
26553803
Gramene 2016: comparative plant genomics and pathway resources. [PMID: 26553803]
Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S, Amarasinghe V, Dharmawardhana P, Jiao Y, Mulvaney J, Kumari S, Chougule K, Elser J, Wang B, Thomason J, Bolser DM, Kerhornou A, Walts B, Fonseca NA, Huerta L, Keays M, Tang YA, Parkinson H, Fabregat A, McKay S, Weiser J, D'Eustachio P, Stein L, Petryszak R, Kersey PJ, Jaiswal P, Ware D.

Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ?200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

Nucleic Acids Res. 2016:44(D1) | 65 Citations (from Europe PMC, 2024-04-06)
28713666
Gramene Database: Navigating Plant Comparative Genomics Resources. [PMID: 28713666]
Gupta P, Naithani S, Tello-Ruiz MK, Chougule K, D'Eustachio P, Fabregat A, Jiao Y, Keays M, Lee YK, Kumari S, Mulvaney J, Olson A, Preece J, Stein J, Wei S, Weiser J, Huerta L, Petryszak R, Kersey P, Stein LD, Ware D, Jaiswal P.

Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationships to enrich the annotation of genomic data and provides tools to perform powerful comparative analyses across a wide spectrum of plant species. It consists of an integrated portal for querying, visualizing and analyzing data for 44 plant reference genomes, genetic variation data sets for 12 species, expression data for 16 species, curated rice pathways and orthology-based pathway projections for 66 plant species including various crops. Here we briefly describe the functions and uses of the Gramene database.

Curr Plant Biol. 2016:7-8() | 29 Citations (from Europe PMC, 2024-04-06)
26519404
Gramene: A Resource for Comparative Analysis of Plants Genomes and Pathways. [PMID: 26519404]
Tello-Ruiz MK, Stein J, Wei S, Youens-Clark K, Jaiswal P, Ware D.

Gramene is an integrated informatics resource for accessing, visualizing, and comparing plant genomes and biological pathways. Originally targeting grasses, Gramene has grown to host annotations for economically important and research model crops, including wheat, potato, tomato, banana, grape, poplar, and Chlamydomonas. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. This chapter outlines system requirements for end users and database hosting, data types and basic navigation within Gramene, and provides examples of how to (1) view a phylogenetic tree for a family of transcription factors, (2) explore genetic variation in the orthologues of a gene with a known trait association, and (3) upload, visualize, and privately share end user data into a new genome browser track.Moreover, this is the first publication describing Gramene's new web interface-intended to provide a simplified portal to the most complete and up-to-date set of plant genome and pathway annotations.

Methods Mol Biol. 2016:1374() | 6 Citations (from Europe PMC, 2024-04-06)
24217918
Gramene 2013: comparative plant genomics resources. [PMID: 24217918]
Monaco MK, Stein J, Naithani S, Wei S, Dharmawardhana P, Kumari S, Amarasinghe V, Youens-Clark K, Thomason J, Preece J, Pasternak S, Olson A, Jiao Y, Lu Z, Bolser D, Kerhornou A, Staines D, Walts B, Wu G, D'Eustachio P, Haw R, Croft D, Kersey PJ, Stein L, Jaiswal P, Ware D.

Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.

Nucleic Acids Res. 2014:42(Database issue) | 95 Citations (from Europe PMC, 2024-04-13)
24280345
A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress. [PMID: 24280345]
Dharmawardhana P, Ren L, Amarasinghe V, Monaco M, Thomason J, Ravenscroft D, McCouch S, Ware D, Jaiswal P.

Functional annotations of large plant genome projects mostly provide information on gene function and gene families based on the presence of protein domains and gene homology, but not necessarily in association with gene expression or metabolic and regulatory networks. These additional annotations are necessary to understand the physiology, development and adaptation of a plant and its interaction with the environment.RiceCyc is a metabolic pathway networks database for rice. It is a snapshot of the substrates, metabolites, enzymes, reactions and pathways of primary and intermediary metabolism in rice. RiceCyc version 3.3 features 316 pathways and 6,643 peptide-coding genes mapped to 2,103 enzyme-catalyzed and 87 protein-mediated transport reactions. The initial functional annotations of rice genes with InterPro, Gene Ontology, MetaCyc, and Enzyme Commission (EC) numbers were enriched with annotations provided by KEGG and Gramene databases. The pathway inferences and the network diagrams were first predicted based on MetaCyc reference networks and plant pathways from the Plant Metabolic Network, using the Pathologic module of Pathway Tools. This was enriched by manually adding metabolic pathways and gene functions specifically reported for rice. The RiceCyc database is hierarchically browsable from pathway diagrams to the associated genes, metabolites and chemical structures. Through the integrated tool OMICs Viewer, users can upload transcriptomic, proteomic and metabolomic data to visualize expression patterns in a virtual cell. RiceCyc, along with additional species-specific pathway databases hosted in the Gramene project, facilitates comparative pathway analysis.Here we describe the RiceCyc network development and discuss its contribution to rice genome annotations. As a case study to demonstrate the use of RiceCyc network as a discovery environment we carried out an integrated bioinformatic analysis of rice metabolic genes that are differentially regulated under diurnal photoperiod and biotic stress treatments. The analysis of publicly available rice transcriptome datasets led to the hypothesis that the complete tryptophan biosynthesis and its dependent metabolic pathways including serotonin biosynthesis are induced by taxonomically diverse pathogens while also being under diurnal regulation. The RiceCyc database is available online for free access at http://www.gramene.org/pathway/.

Rice (N Y). 2013:6(1) | 50 Citations (from Europe PMC, 2024-04-06)
21076153
Gramene database in 2010: updates and extensions. [PMID: 21076153]
Youens-Clark K, Buckler E, Casstevens T, Chen C, Declerck G, Derwent P, Dharmawardhana P, Jaiswal P, Kersey P, Karthikeyan AS, Lu J, McCouch SR, Ren L, Spooner W, Stein JC, Thomason J, Wei S, Ware D.

Now in its 10th year, the Gramene database (http://www.gramene.org) has grown from its primary focus on rice, the first fully-sequenced grass genome, to become a resource for major model and crop plants including Arabidopsis, Brachypodium, maize, sorghum, poplar and grape in addition to several species of rice. Gramene began with the addition of an Ensembl genome browser and has expanded in the last decade to become a robust resource for plant genomics hosting a wide array of data sets including quantitative trait loci (QTL), metabolic pathways, genetic diversity, genes, proteins, germplasm, literature, ontologies and a fully-structured markers and sequences database integrated with genome browsers and maps from various published studies (genetic, physical, bin, etc.). In addition, Gramene now hosts a variety of web services including a Distributed Annotation Server (DAS), BLAST and a public MySQL database. Twice a year, Gramene releases a major build of the database and makes interim releases to correct errors or to make important updates to software and/or data.

Nucleic Acids Res. 2011:39(Database issue) | 100 Citations (from Europe PMC, 2024-04-06)
20931385
Gramene database: a hub for comparative plant genomics. [PMID: 20931385]
Jaiswal P.

The rich collection of known genetic information and the recent completion of rice genome sequencing project provided the cereal plant researchers a useful tool to investigate the roles of genes and genomic organization that contribute to numerous agronomic traits. Gramene ( http://www.gramene.org ) is a unique database where users are allowed to query and explore the power of genomic colinearity and comparative genomics for genetic and genomic studies on plant genomes. Gramene presents a wholesome perspective by assimilating data from a broad range of publicly available data sources for cereals like rice, sorghum, maize, wild rice, wheat, oats, barley, and other agronomically important crop plants such as poplar and grape, and the model plant Arabidopsis. As part of the process, it preserves the original data, but also reanalyzes for integration into several knowledge domains of maps, markers, genes, proteins, pathways, phenotypes, including Quantitative Trait Loci (QTL) and genetic diversity/natural variation. This allows researchers to use this information resource to decipher the known and predicted interactions between the components of biological systems, and how these interactions regulate plant development. Using examples from rice, this article describes how the database can be helpful to researchers representing an array of knowledge domains ranging from plant biology, plant breeding, molecular biology, genomics, biochemistry, genetics, bioinformatics, and phylogenomics.

Methods Mol Biol. 2011:678() | 26 Citations (from Europe PMC, 2024-04-06)
17984077
Gramene: a growing plant comparative genomics resource. [PMID: 17984077]
Liang C, Jaiswal P, Hebbard C, Avraham S, Buckler ES, Casstevens T, Hurwitz B, McCouch S, Ni J, Pujar A, Ravenscroft D, Ren L, Spooner W, Tecle I, Thomason J, Tung CW, Wei X, Yap I, Youens-Clark K, Ware D, Stein L.

Gramene (www.gramene.org) is a curated resource for genetic, genomic and comparative genomics data for the major crop species, including rice, maize, wheat and many other plant (mainly grass) species. Gramene is an open-source project. All data and software are freely downloadable through the ftp site (ftp.gramene.org/pub/gramene) and available for use without restriction. Gramene's core data types include genome assembly and annotations, other DNA/mRNA sequences, genetic and physical maps/markers, genes, quantitative trait loci (QTLs), proteins, ontologies, literature and comparative mappings. Since our last NAR publication 2 years ago, we have updated these data types to include new datasets and new connections among them. Completely new features include rice pathways for functional annotation of rice genes; genetic diversity data from rice, maize and wheat to show genetic variations among different germplasms; large-scale genome comparisons among Oryza sativa and its wild relatives for evolutionary studies; and the creation of orthologous gene sets and phylogenetic trees among rice, Arabidopsis thaliana, maize, poplar and several animal species (for reference purpose). We have significantly improved the web interface in order to provide a more user-friendly browsing experience, including a dropdown navigation menu system, unified web page for markers, genes, QTLs and proteins, and enhanced quick search functions.

Nucleic Acids Res. 2008:36(Database issue) | 87 Citations (from Europe PMC, 2024-04-06)
18287700
Ware D.

Grasses are one of the largest agricultural crops, providing food, industrial materials and renewable energy sources. Due to their large genome size and the number of the species in the taxa, many of the genomes are not targeted for complete sequencing. Gramene seeks to provide basic researchers, industry and educators with a resource that can be used as a tool for knowledge discovery across grass species. This chapter briefly outlines system requirements for end users and database hosting, outlines data types and basic navigation within Gramene and provides an example of how a maize researcher would use Gramene to leverage rice genome organization and phenotypic information to support targeted experimental research in maize.

Methods Mol Biol. 2007:406() | 5 Citations (from Europe PMC, 2024-04-06)
16381966
Gramene: a bird's eye view of cereal genomes. [PMID: 16381966]
Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K, Faga B, Canaran P, Fogleman M, Hebbard C, Avraham S, Schmidt S, Casstevens TM, Buckler ES, Stein L, McCouch S.

Rice, maize, sorghum, wheat, barley and the other major crop grasses from the family Poaceae (Gramineae) are mankind's most important source of calories and contribute tens of billions of dollars annually to the world economy (FAO 1999, http://www.fao.org; USDA 1997, http://www.usda.gov). Continued improvement of Poaceae crops is necessary in order to continue to feed an ever-growing world population. However, of the major crop grasses, only rice (Oryza sativa), with a compact genome of approximately 400 Mbp, has been sequenced and annotated. The Gramene database (http://www.gramene.org) takes advantage of the known genetic colinearity (synteny) between rice and the major crop plant genomes to provide maize, sorghum, millet, wheat, oat and barley researchers with the benefits of an annotated genome years before their own species are sequenced. Gramene is a one stop portal for finding curated literature, genetic and genomic datasets related to maps, markers, genes, genomes and quantitative trait loci. The addition of several new tools to Gramene has greatly facilitated the potential for comparative analysis among the grasses and contributes to our understanding of the anatomy, development, environmental responses and the factors influencing agronomic performance of cereal crops. Since the last publication on Gramene database by D. H. Ware, P. Jaiswal, J. Ni, I. V. Yap, X. Pan, K. Y. Clark, L. Teytelman, S. C. Schmidt, W. Zhao, K. Chang et al. [(2002), Plant Physiol., 130, 1606-1613], the database has undergone extensive changes that are described in this publication.

Nucleic Acids Res. 2006:34(Database issue) | 99 Citations (from Europe PMC, 2024-04-06)
15659431
Biological ontologies in rice databases. An introduction to the activities in Gramene and Oryzabase. [PMID: 15659431]
Yamazaki Y, Jaiswal P.

An enormous amount of information and materials in the field of biology has been accumulating, such as nucleotide and amino acid sequences, gene and protein functions, mutants and their phenotypes, and literature references, produced by the rapid development in this field. Effective use of the information may strongly promote biological studies, and may lead to many important findings. It is, however, time-consuming and laborious for individual researchers to collect information from individual original sites and to rearrange it for their own purpose. A concept, ontology, has been introduced in biology to support and encourage researchers to share and reuse information among biological databases. Ontology has a glossary, named dynamic controlled vocabulary, in which relationships between terms are defined. Since each term is strictly defined and identified with an ID number, a set of data represented in biological ontology is easily accessible to automated information processing, even if the data sets are across several databases and/or different organisms. In this mini-review, we introduce activities in Gramene and Oryzabase, which provide biological ontologies for Oryza sativa (rice).

Plant Cell Physiol. 2005:46(1) | 22 Citations (from Europe PMC, 2024-04-06)
18628886
Gramene: development and integration of trait and gene ontologies for rice. [PMID: 18628886]
Jaiswal P, Ware D, Ni J, Chang K, Zhao W, Schmidt S, Pan X, Clark K, Teytelman L, Cartinhour S, Stein L, McCouch S.

Gramene (http://www.gramene.org/) is a comparative genome database for cereal crops and a community resource for rice. We are populating and curating Gramene with annotated rice (Oryza sativa) genomic sequence data and associated biological information including molecular markers, mutants, phenotypes, polymorphisms and Quantitative Trait Loci (QTL). In order to support queries across various data sets as well as across external databases, Gramene will employ three related controlled vocabularies. The specific goal of Gramene is, first to provide a Trait Ontology (TO) that can be used across the cereal crops to facilitate phenotypic comparisons both within and between the genera. Second, a vocabulary for plant anatomy terms, the Plant Ontology (PO) will facilitate the curation of morphological and anatomical feature information with respect to expression, localization of genes and gene products and the affected plant parts in a phenotype. The TO and PO are both in the early stages of development in collaboration with the International Rice Research Institute, TAIR and MaizeDB as part of the Plant Ontology Consortium. Finally, as part of another consortium comprising macromolecular databases from other model organisms, the Gene Ontology Consortium, we are annotating the confirmed and predicted protein entries from rice using both electronic and manual curation.

Comp Funct Genomics. 2002:3(2) | 21 Citations (from Europe PMC, 2024-04-06)
11752266
Gramene: a resource for comparative grass genomics. [PMID: 11752266]
Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L.

Gramene (http://www.gramene.org) is a comparative genome mapping database for grasses and a community resource for rice. Rice, in addition to being an economically important crop, is also a model monocot for understanding other agronomically important grass genomes. Gramene replaces the existing AceDB database 'RiceGenes' with a relational database based on Oracle. Gramene provides curated and integrative information about maps, sequence, genes, genetic markers, mutants, QTLs, controlled vocabularies and publications. Its aims are to use the rice genetic, physical and sequence maps as fundamental organizing units, to provide a common denominator for moving from one crop grass to another and is to serve as a portal for interconnecting with other web-based crop grass resources. This paper describes the initial steps we have taken towards realizing these goals.

Nucleic Acids Res. 2002:30(1) | 94 Citations (from Europe PMC, 2024-04-06)
12481044
Gramene, a tool for grass genomics. [PMID: 12481044]
Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY, Teytelman L, Schmidt SC, Zhao W, Chang K, Cartinhour S, Stein LD, McCouch SR.

Gramene (http://www.gramene.org) is a comparative genome mapping database for grasses and a community resource for rice (Oryza sativa). It combines a semi-automatically generated database of cereal genomic and expressed sequence tag sequences, genetic maps, map relations, and publications, with a curated database of rice mutants (genes and alleles), molecular markers, and proteins. Gramene curators read and extract detailed information from published sources, summarize that information in a structured format, and establish links to related objects both inside and outside the database, providing seamless connections between independent sources of information. Genetic, physical, and sequence-based maps of rice serve as the fundamental organizing units and provide a common denominator for moving across species and genera within the grass family. Comparative maps of rice, maize (Zea mays), sorghum (Sorghum bicolor), barley (Hordeum vulgare), wheat (Triticum aestivum), and oat (Avena sativa) are anchored by a set of curated correspondences. In addition to sequence-based mappings found in comparative maps and rice genome displays, Gramene makes extensive use of controlled vocabularies to describe specific biological attributes in ways that permit users to query those domains and make comparisons across taxonomic groups. Proteins are annotated for functional significance using gene ontology terms that have been adopted by numerous model species databases. Genetic variants including phenotypes are annotated using plant ontology terms common to all plants and trait ontology terms that are specific to rice. In this paper, we present a brief overview of the search tools available to the plant research community in Gramene.

Plant Physiol. 2002:130(4) | 102 Citations (from Europe PMC, 2024-04-06)

Ranking

All databases:
267/6000 (95.567%)
Gene genome and annotation:
101/1675 (94.03%)
267
Total Rank
915
Citations
41.591
z-index

Community reviews

Not Rated
Data quality & quantity:
Content organization & presentation
System accessibility & reliability:

Word cloud

Related Databases

Citing
Cited by

Record metadata

Created on: 2015-06-20
Curated by:
Zhang Zhang [2022-06-29]
Dong Zou [2021-10-19]
Lina Ma [2019-04-16]
Lina Ma [2018-06-01]
Dong Zou [2018-02-07]
Lin Liu [2016-03-26]
Mengwei Li [2016-02-20]
Lin Liu [2016-02-08]
Lin Liu [2016-01-08]
Lina Ma [2015-11-10]
Jian Sang [2015-06-28]