GSA Help Document

Version 2.1, 2018

GSA Submission	2
Experiments	2
Meta Information	2
Library	1
Run 8	3
General Information	3
Data Blocks	3

GSA Submission

*Alias

Submission name of the GSA. This field is used when the record does not yet have an accession

and needs to be referenced by other objects.

* Data Released

Select Release on specified date or give release data in correct format (yyyy-MM-dd).

Experiments

Meta Information

* Platform

The sequencing platform and instrument model

Platform	Instrument Model	
	454 GS	
	454 GS 20	
LS454	454 GS FLX	
L3434	454 GS FLX Titanium	
	454 GS FLX+	
	454 GS Junior	
	AB 310 Genetic Analyzer	
	AB 3130 Genetic Analyzer	
	AB 3130xL Genetic Analyzer	
Capillary Technologies	AB 3500 Genetic Analyzer	
	AB 3500xL Genetic Analyzer	
	AB 3730 Genetic Analyzer	
	AB 3730xL Genetic Analyzer	
	AB 5500 Genetic Analyzer	
	AB 5500xl Genetic Analyzer	
	AB 5500x-WI Genetic Analyzer	
	AB SOLiD 3 Plus System	
ABI Solid	AB SOLiD 4 System	
	AB SOLiD 4hq System	
	AB SOLiD PI System	
	AB SOLiD System 1.0	
	AB SOLiD System 2.0	
	AB SOLiD System 3.0	
	BGISEQ-100	
BGISeq	BGISEQ-1000	
	BGISEQ-500	

CapitalBio Company	BioelectronSeq 4000		
Discours Occupation	BioNano IRYS		
Bionano Genomics	BioNano SAPHYR		
Complete Genomics	Complete Genomics		
DAAN GENE	DA8600		
Helicos BioSciences Corporation	Helicos HeliScope		
HYK Genetic	HYK-PSTAR-IIA		
	Illumina Genome Analyzer		
	Illumina Genome Analyzer II		
	Illumina Genome Analyzer IIx		
	Illumina HiScanSQ		
	Illumina HiSeq 1000		
	Illumina HiSeq 1500		
	Illumina HiSeq 2000		
	Illumina HiSeq 2500		
Illumina	Illumina HiSeq 3000		
numina	Illumina HiSeq 4000		
	Illumina HiSeq X Ten		
	Illumina MiSeq		
	Illumina MiniSeq		
	Illumina Nextseq 500		
	Illumina Nextseq 550		
	Illumina iSeq 100		
	Illumina NovaSeq 5000		
	Illumina NovaSeq 6000		
IonTorrent	Ion Torrent PGM		
lonronent	Ion Torrent Proton		
Oxford Nanopore	MinION		
	GridION		
Berry Genomics	NextSeq CN500		
	PacBio RS		
PacBio SMRT	PacBio RS II		
	PacBio Sequel		

*Alias

Submission name of the experiment. This field is used when the record does not yet have an accession and needs to be referenced by other objects.

*Title

Short text that can be used to call out experiment records in searches or in displays. This element is technically optional but should be used for all new records.

*Project accession

Link data to BioProject that describes the research.

* Sample accession

Enter a BioSample or GSA Sample Accession. BioSample accessions have 'SAMN' prefix. GSA Sample Accessions have 'CRS' prefix. A BioSample describes the biological source material for your sequence library preparation.

* Library Construction/Experiment design

Choose the details about your experimental design and molecular strategies including hybrid selection and affinity capture reagents; any detail that distinguishes your experiment from other similar experiments.

Library

The library descriptor specifies the origin of the material being sequenced and any treatments that the material might have undergone that affect the sequencing result. This specification is needed even if the platform does not require a library construction step per se.

Library name

The submitter's name for this library.

* Strategy

Sequencing technique intended for this library.

Library Strategy	Description		
WGS	Whole genome shotgun.		
WGA	Whole genome amplification.		
WES	Whole exome sequencing is a genomic technique for sequencing		
	all of the protein-coding genes in a genome (known as the exome).		
WXS	Random sequencing of exonic regions selected from the genome.		
RNA-Seq	Random sequencing of whole transcriptome.		
miRNA-Seq	Micro RNA and other small non-coding RNA sequencing.		
WCS	Whole chromosome (or other replicon) shotgun.		
CLONE	Genomic clone based (hierarchical) sequencing.		
POOLCLONE	Shotgun of pooled clones (usually BACs and Fosmids).		
AMPLICON	Sequencing of overlapping or distinct PCR or RT-PCR products.		
CLONEEND	Clone end (5', 3', or both) sequencing.		
FINISHING	Sequencing intended to finish (close) gaps in existing coverage.		
ChIP-Seq	Direct sequencing of chromatin immunoprecipitates.		
MNase-Seq	Direct sequencing following MNase digestion.		

DNase-Hypersensitivity	Sequencing of hypersensitive sites, or segments of open chromatin		
	that are more readily cleaved by DNasel.		
Bisulfite-Seq	Sequencing following treatment of DNA with bisulfite to conv		
	cytosine residues to uracil depending on methylation status.		
Tn-Seq	Gene fitness determination through transposon seeding.		
EST	Single pass sequencing of cDNA templates.		
FL-cDNA	Full-length sequencing of cDNA templates.		
CTS	Concatenated Tag Sequencing.		
MRE-Seq	Methylation-Sensitive Restriction Enzyme Sequencing strategy.		
MeDIP-Seq	Methylated DNA Immunoprecipitation Sequencing strategy.		
MBD-Seq	Direct sequencing of methylated fractions sequencing strategy.		
Synthetic-Long-Read	binning and barcoding of large DNA fragments to facilitate		
	assembly of the fragment		
ATAC-seq	Assay for Transposase-Accessible Chromatin (ATAC) strategy is		
	used to study genome-wide chromatin accessibility. alternative		
	method to DNase-seq that uses an engineered Tn5 transposase to		
	cleave DNA and to integrate primer DNA sequences into the		
	cleaved genomic DNA		
ChIA-PET	Direct sequencing of proximity-ligated chromatin immune-		
	precipitates.		
FAIRE-seq	Formaldehyde Assisted Isolation of Regulatory Elements		
Hi-C	Chromosome Conformation Capture technique where a biotin-		
	labeled nucleotide is incorporated at the ligation junction, enabling		
	selective purification of chimeric DNA ligation junctions followed by		
	deep sequencing		
ncRNA-Seq	Capture of other non-coding RNA types, including post-translation		
	modification types such as snRNA (small nuclear RNA) or snoRNA		
	(small nucleolar RNA), or expression regulation types such as		
	siRNA (small interfering RNA) or piRNA/piwi/RNA (piwi-interacting		
	RNA).		
RAD-Seq	Restriction Site Associated DNA Sequence		
RIP-Seq	Direct sequencing of RNA immunoprecipitates (includes CLIP-Seq,		
	HITS-CLIP and PAR-CLIP).		
SELEX	Systematic Evolution of Ligands by EXponential enrichment		
ssRNA-seq	strand-specific RNA sequencing		
Targeted-Capture	Targeted-Capture sequencing		
Tethered Chromatin Conformation	Tethered Chromatin Conformation Capture sequencing		
Capture			

* Source

The library source specifies the type of source material that is being sequenced.

Source	Type of genetic source material sequenced		
GENOMIC	Genomic DNA (includes PCR products from genomic DNA)		
TRANSCRIPTOMIC	Transcription products or non-genomic DNA (EST, cDNA, RT-PCR,		
	screened libraries)		
METATRANSCRIPTOMIC	Transcription products from community targets		
METAGENOMIC	Mixed material from metagenome		
SYNTHETIC	Synthetic DNA		
VIRAL RNA	Viral RNA		
OTHER	Other, unspecified, or unknown library source material (please include		
	additional info in the "design description")		

*Selection

Whether any method was used to select and/or enrich the material being sequenced.

Selection	Method of selection or enrichment used in the Experiment		
unspecified	Library enrichment, screening, or selection is not specified (please include		
	additional info in the "design description")		
RANDOM	Random selection by shearing or other method		
PCR	Source material was selected by designed primers		
RANDOM PCR	Source material was selected by randomly generated primers		
RT-PCR	Source material was selected by reverse transcription PCR		
HMPR	Hypo-methylated partial restriction digest		
MF	Methyl Filtrated		
CF-S	Cot-filtered single/low-copy genomic DNA		
CF-M	Cot-filtered moderately repetitive genomic DNA		
CF-H	Cot-filtered highly repetitive genomic DNA		
CF-T	Cot-filtered theoretical single-copy genomic DNA		
MDA	Multiple displacement amplification		
MSLL	Methylation Spanning Linking Library		
cDNA	complementary DNA		

ChIP	Chromatin immunoprecipitation	
MNase	Micrococcal Nuclease (MNase) digestion	
DNAse	Deoxyribonuclease (MNase) digestion	
Hybrid Selection	Selection by hybridization in array or solution	
Reduced Representation	Reproducible genomic subsets, often generated by restriction fragment	
	size selection, containing a manageable number of loci to facilitate re-	
	sampling	
Restriction Digest	DNA fractionation using restriction enzymes	
5-methylcytidine antibody	Selection of methylated DNA fragments using an antibody raised against	
	5-methylcytosine or 5-methylcytidine (m5C)	
MBD2 protein methyl-CpG	G Enrichment by methyl-CpG binding domain	
binding domain		
CAGE	Cap-analysis gene expression	
RACE	Rapid Amplification of cDNA Ends	
size fractionation	Physical selection of size appropriate targets	
Padlock probes capture	Circularized oligonucleotide probes	
method		
Poly-A	polyA enriched RNA-seq	
other	Other library enrichment, screening, or selection process (please include	
	additional info in the "design description")	

*Layout

Library Layout specifies whether to expect single, Pair-end, or other configuration of reads. In the case of paired reads, information about the relative distance and orientation is specified.

*Insert size (bp)

Fragment size for Paired reads.

Nominal size (bp)

Size of the insert for Paired reads.

Nominal standard deviation (bp)

Standard deviation of insert size (typically ~10% of Nominal Size)

Run

General Information

* Alias

Submitter assigned name or id for the GSA submission object.

* Run data file type

The GSA is a raw data archive, and requires per-base quality scores for all submitted data. GSA accepts binary files such as BAM, SFF, and HDF5 formats and text formats such as FASTQ. The major data file format we accept as shown below.

Format	File suffix	Recommended	Description
Fastq format	.fastq.gz, .fq.gz	Yes	fastq files with constant read length
	.fastq.bz2, .fq.bz2		
BAM format	.bam	Yes	Binary SAM format for use by loaders
			that combine alignment and
			sequencing data
HDF5 format	.bax.h5	Yes	HDF5 is a data model, library, and file
	.bas.h5		format for storing and managing data.
Reference_FASTA	.fasta.gz, .fa.gz	Yes	Reference sequence file in single fasta
			format used to construct SRA archive
			file format.

Data Blocks

Fastq format (as an example)

Fastq format is a text-based format for storing both a biological sequence (usually nucleotide sequence) and its corresponding quality scores. Both the sequence letter and quality score are each encoded with a single ASCII character for brevity.

* File Name for Forward

Please fill in the whole name of the data files (including suffix). NOTICE whitespace characters are not allowed in the file names.We only accept GZIP and BZIP2 compression formats. IN ADDITION, don't accept 7-ZIP or TAR compressed files.

* MD5 for Forward file

MD5 checksums are a 32-character alphanumeric string. For Mac and Linux system users, the native command line tools "md5sum"(Linux) and "md5"(Mac OX) can be used to generate MD5 checksums. Windows users must need to download a third-party utility.

* File Name for Reverse

Please fill in the whole name of the data files (including suffix). NOTICE whitespace characters are not allowed in the file names. We only accept GZIP and BZIP2 compression formats. AND don't accept 7-ZIP or TAR compressed files.

* MD5 for Reverse file

MD5 checksums are a 32-character alphanumeric string. For Mac and Linux system users, the native command line tools "md5sum"(Linux) and "md5"(Mac OX) can be used to generate MD5 checksums. Windows users must need to download a third-party utility.

BAM format (as an example)

The BAM format is an efficient method for storing and sharing data from modern, highly parallel sequencers. While primarily used for storing alignment information, BAMs can (and frequently do) store unaligned reads as well.

* Reference Assembly Name

* Assembly Name or Accession

The Reference's assembly name or assembly accession number

* Web URL of the Reference Assembly

The URL of the Reference Assembly

* File Name for bam

Submitted BAM files must be readable with SAMtools. BAM file names are required to end up with the .bam suffix (e.g. 'a.bam').

* MD5 for bam file

MD5 checksums are a 32-character alphanumeric string. For Mac and Linux system users, the native command line tools "md5sum"(Linux) and "md5"(Mac OX) can be used to generate

MD5 checksums. Windows users must need to download a third-party utility.

* Local Assembly file

* Reference file name

The Reference's file name

* MD5 for reference file

MD5 checksums are a 32-character alphanumeric string. For Mac and Linux system users,

the native command line tools "md5sum"(Linux) and "md5"(Mac OX) can be used to generate MD5 checksums. Windows users must need to download a third-party utility.

* File Name for bam

Submitted BAM files must be readable with SAMtools. BAM file names are required to end up with the .bam suffix (e.g. 'a.bam').

* MD5 for bam file

MD5 checksums are a 32-character alphanumeric string. For Mac and Linux system users, the native command line tools "md5sum"(Linux) and "md5"(Mac OX) can be used to generate MD5 checksums. Windows users must need to download a third-party utility.